SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title: Mechanics of Fluids

Code No.: MCH125 (SUBSTITUTE FOR ELN 105)

Program: Electrical/Electronic/Computer Engineering

Semester: First

Date: January 1985

Author: G. Disano

New:

Revision:

APPROVED:

Chairperson

Date

CALENDAR DESCRIPTION

Mechanics of Fluids	MCH125
Course Name	Course Number

PHILOSOPHY/GOALS: ^{Tlie} objective of this course is to introduce the student to the fundamental concepts of fluid mechanics. Topics covered include: pressure, pressure measurement, buoyancy, fluid flow, the conservation of energy within a flowing fluid - Bernoulli's Energy Equation, velocity and flow measuring instruments. The intention of this course is to introduce the student to the fundamental concepts of fluid mechanics to provide a foundation for a later course in instrumentation. Students who elect to follow the technician level program take in semester 2 a course in applied mechanics - PHY113 - in addition to this course in fluid mechanics in preparation for the instrumentation.

METHOD OF ASSESSMENT (GRADING METHOD):

See the attached sheet: GRADE REQUIREMENTS

TEXTBOOK(S): Introduction to Fluid Mechanics by Russell W. Henke

GRADE REQUIREMENTS

MCH125

MECHANICS OF FLUIDS

(Electrical/Electronic/Computer Engineering)

Your final grade in MCH125 will be determined on the basis of four tests to be administered during the semester. Each test will examine your knowledge.of a number of topics and will be administered within a week of completing those topics. The topics covered in each of the four tests are as follows:

> Test #1_____Topic Number I Topic Number II Test #2_____Topic Number III Topic Number IV Test #3_____Topic Number V Topic Number VI Test #4____Topic Number VII

The four tests are of equal weight (i.e. each of the four test is worth 25% of your final grade). As a result your final grade will simply be an average of your four test results. In order to obtain your letter grade the following percentage-letter grade equivalents will be used:

> A : 76% - 100% B : 66% - 75% C : 55% - 65% X or R : 0% - 54%

If your final average is below 55% whether you receive an X (Incomplete) or an R (Repeat) grade is entirely up to the instructor's discretion. The decision will be based upon your final average (i.e. 32% would result in an R grade while 50% <u>might</u> result in an X grade), your attendance during the semester, your attitude while in the classroom, your perceived level of effort during the semester, etc.. In any case, should you find yourself with an X grade at the end of the semester, in order to upgrade your mark to a passing grade you will be required to write a make-up <u>examination</u> covering the entire course content. Should you receive a passing grade on the make-up examination (55% or higher) your X grade will be upgraded to a C grade. The best you can do after receiving an X grade is a C!

Prior to administering any test, you will be notified a full week in advance. Should you for any reason not be able to be in attendance on a day for which a test has been scheduled it is your responsibility to notify the instructor <u>prior</u> to the test I If your reasons are acceptable a date will be set during which you may write the test you have missed.

COURSE OUTLINE

PHYSICS MCH125

MECHANICS OF FLUIDS

			MECHANICS OF FLUIDS	
	(Electr	ical/El	lectronic/Computer Engineering)
Reference	Text:	<u>Introd</u> by Rus	luction to Fluid Mechanics sell W. Henke	
Topic Number	Perio Lecture	ods 2-Lab	Topic Description	Reference
I	3	0	<u>Introduction</u> - Fluids - Units Used in Fluid Mechar	Chapter 1
			- General Properties of Flu:	ids
			- Properties of Water	
			- Some Properties of Other Fluids	
II	9	0	Pressure	Chapters 1,2
			- Unit Pressure	
			- Direction of Resultant Pre	essure
			- Pascal's Laws	
			- Atmospheric Pressure	
			- Vacuum	
			- Absolute and Guage Pressur	re
			- Variation of Pressure with in a Fluid	n Depth
			- Pressure "Head"	
			- Transmission of Pressure	
			- Vapour Pressure	
III	10	0	Pressure Measurement	Chapter 2
			- the Mercury Barometer	
			- the Piezometer	
			- Manometers - the Open Mano - the Different	ometer Lial Manometer

Continued...

0 <u>Buoyancy</u>

0

- Archimedes' Principle
- Fluid Flow Chapters 4,13,14
 - Path Lines
 - Laminar and Turbulent Flow
 - Velocity
 - Volumetric Flow Rate
 - Mass Flow Rate
 - Weight Flow Rate
 - Continuity
- 0 <u>The Conservation of Energy</u> Chapters 5,6

Bernoulli's Equation

- Energy and Head
- Bernoulli's Energy Theorem
- Bernoulli's Energy Equation
- Calculations Using Bernoulli's Equation
- 0 <u>Velocity and Flow Measuring</u> Chapters 7,8,9 <u>Instruments</u>
 - the Pitot Tube
 - the Venturi Meter
 - the Flow Nozzle
 - the Orifice Plate
 - Meter Coefficients

G. Disano, September 1983